Framework of Consciousness from Semblance of Activity at Functionally LINKed Postsynaptic Membranes

نویسنده

  • Kunjumon I. Vadakkan
چکیده

Consciousness is seen as a difficult "binding" problem. Binding, a process where different sensations evoked by an item are associated in the nervous system, can be viewed as a process similar to associative learning. Several reports that consciousness is associated with some form of memory imply that different forms of memories have a common feature contributing to consciousness. Based on a proposed synaptic mechanism capable of explaining different forms of memory, we developed a framework for consciousness. It is based on the formation of semblance of sensory stimulus from (1) synaptic semblances when excitatory postsynaptic potentials arrive at functionally LINKed postsynaptic membranes, and (2) network semblances when these potentials summate to elicit action potential initiating activity in a network of neurons. It is then possible to derive a framework for consciousness as a multi-dimensional semblance. According to this framework, a continuum of semblances formed from background sensory stimuli and oscillating neuronal activities serve to maintain consciousness. Feasibility of this framework to explain various physiological and pathological states of consciousness, its subjective nature and qualia is examined.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Substantive nature of sleep in updating the temporal conditions necessary for inducing units of internal sensations

Unlike other organs that operate continuously, such as the heart and kidneys, many of the operations of the nervous system shut down during sleep. The evolutionarily conserved unconscious state of sleep that puts animals at risk from predators indicates that it is an indispensable integral part of systems operation. A reasonable expectation is that any hypothesis for the mechanism of the nervou...

متن کامل

Effect of adding Nanoclay (Cloisite-30B) on the Proton Conductivity of Sulfonated Polybenzimidazole

A novel sulfonated polybenzimidazole/organoclay (Cloisite-30B) (SPBI/clay) nanocomposite membranes was successfully synthesized based on aromatic diacide (1) and diaminobenzidine. Nanocomposite membranes were fabricated using 1, 4-bis (hydroxymethyl) benzene (BHMB) as cross-linker, and Cloisite-30B organoclay as the pseudo cross-linker. The cross-linked SPBI/clay nanocomposite membranes were pr...

متن کامل

Behavioral Optimization of Pseudo-Neutral Hole in Hyperelastic Membranes Using Functionally graded Cables

Structures consisting of cables and membranes have been of interest to engineers due to their higher ratio of strength to weight and lower cost compared to other structures. One of the challenges in such structures is presence of holes in membranes, which leads to non-uniform stress and strain distributions, even under uniform far-field deformations. One of the approaches suggested for controll...

متن کامل

GABA-mediated membrane oscillations as coincidence detectors for enhancing synaptic efficacy in the developing hippocampus

Spontaneously occurring neuronal oscillations constitute a hallmark of developmental networks. They have been observed in the retina, neocortex, hippocampus, thalamus and spinal cord. In the immature hippocampus the so-called ‘giant depolarizing potentials’ (GDPs) are network-driven membrane oscillations characterized by recurrent membrane depolarization with superimposed fast action potentials...

متن کامل

GABA-mediated membrane oscillations as coincidence detectors for enhancing synaptic efficacy in the developing hippocampus

Spontaneously occurring neuronal oscillations constitute a hallmark of developmental networks. They have been observed in the retina, neocortex, hippocampus, thalamus and spinal cord. In the immature hippocampus the so-called ‘giant depolarizing potentials’ (GDPs) are network-driven membrane oscillations characterized by recurrent membrane depolarization with superimposed fast action potentials...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 1  شماره 

صفحات  -

تاریخ انتشار 2010